Exercise 50

Find y^{\prime} and $y^{\prime \prime}$.

$$
y=e^{e^{x}}
$$

Solution

Take the derivative using the chain rule.

$$
\begin{aligned}
y^{\prime}=\frac{d y}{d x} & =\frac{d}{d x}\left(e^{e^{x}}\right) \\
& =e^{e^{x}} \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =e^{e^{x}} \cdot\left(e^{x}\right) \\
& =e^{e^{x}+x}
\end{aligned}
$$

Take another derivative.

$$
\begin{aligned}
y^{\prime \prime}=\frac{d}{d x}\left(y^{\prime}\right) & =\frac{d}{d x}\left(e^{e^{x}+x}\right) \\
& =e^{e^{x}+x} \cdot \frac{d}{d x}\left(e^{x}+x\right) \\
& =e^{e^{x}+x} \cdot\left(e^{x}+1\right) \\
& =\left(e^{x}+1\right) e^{e^{x}+x}
\end{aligned}
$$

